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A Supplementary methods for the mathematical models

A.1 Analytical model
A.1.1 Most Sabin secondary transmission from one SIA finishes before the next SIA

It is reasonable to assume that all secondary transmission of Sabin poliovirus from one STA has
finished before the next SIA if Rys < 1, because the majority of secondary transmission will take place
in under 4 weeks. This can be shown by considering a branching process for OPV transmission: the
cumulative distribution function for the number of generations g in an outbreak is given for a model
with a geometric offspring distribution (which includes the simple SIR model) by Farrington & Grant,
1999 [1] as
1— RIH1
TR
where R < 1 is the reproduction number. If we assume the generation time (interval between becoming
infected and infecting others) for Sabin poliovirus transmission is approximately one week, consistent
with estimates for wild-type poliovirus [2, 3], then 87% of transmission will have finished after 4 weeks
for Ryps = 0.9. For lower values of Ryg transmission will be over faster, e.g. 98% by 4 weeks for
Ros = 0.5.

P(G<g)=

A.1.2 Modelling details for the two types of SIA coverage: random and fixed

After the first SIA, subsequent SIAs are assumed to reach the same proportion v of the population
(i.e. same coverage), which may either consist of randomly chosen individuals at each round (random
coverage), or repeatedly reach the same fixed group of individuals (fixed coverage), meaning there is a
persistently “missed” group. Each of the subsequent n SIAs after the first one results in a proportion
19,13, ..., in, Of individuals shedding Sabin poliovirus. Similarly, we denote the proportion of susceptible
following each SIA by so, s3, ..., Sn.

In the case of random coverage,
=yl + j=2,..,n

where y{ is the proportion shedding as a result of direct administration of OPV during the j-th SIA
and y3 is the proportion shedding as a result of secondary spread of OPV from that SIA. Similar to
the expressions for one SIA, those proportions are given by

o= sjiow (1)
wh = (s1-v]) [1 - exp(~Ros(y] + )] (2)
where v is the coverage of the campaign and w is vaccine “take”. The proportion of susceptible

following the j-th SIA is
Sj :Sj—l_ij ]:2,,n

In the case of fixed coverage, if we assume that secondary spread of OPV does reach the persistently
missed group, then it becomes necessary to keep track separately of the fraction of the persistently
missed group and of the vaccinated group that are susceptible to infection. In this model,

=ity =ity

where y% v and y% s are the proportion of children who shed after secondary OPV spread following
the j-th SIA in the vaccinated and missed groups respectively. The proportion shedding as a result
of direct administration of OPV during the j-th SIA is y] = sj_1 yvw, where s;_; is the fraction
of the vaccinated group that is susceptible to infection immediately before the j-th SIA commences.
The proportion shedding as a result of secondary spread of OPV is given by

v = (sj_1v — Y + Sj_1.m1) [1 — exp(—Ros(y] + y%))}



where s;_1 5s is the fraction of the persistently missed group susceptible to infection before the j-th
SIA. A proportion p7V of y% will belong to the vaccinated group, whereas a proportion p{w =1- p{'/ will
belong to the missed group, and those proportions will depend on the relative size of the susceptible
in the two groups before the j-th STA:

j

i Sj—1V — ¥

by = ;
Sj—1V — Y1 T Sj-1,M

j Sj—1,M

W J 5

Py =

Sj—1,V — Y1 + 8j-1,M
Using p7V and p]M, the final proportions of individuals shedding as a result of secondary spread are
given by A o . o

Yy =pyys and oy =Dy
and the proportions of susceptible are finally updated as follows:

Sj = Sj_l — ij
SV = 8j-1,V — Y ~ Wy
SjM = Sj—1,M — Y3 0+

Figure A illustrates the assumptions of this model.

A.2 Reformulation of the analytical model

The analytical model described in the main text and above (Section A.1) can be reformulated by
changing the order in which OPV administration and secondary spread of OPV are assumed to occur.
Instead of modeling the effect of n SIAs sequentially one by one (i.e. one SIA takes place, followed by
the secondary spread of Sabin virus due to that STA, then updating the proportion susceptible, and
starting again the process as many times as the number of STAs), we can model the same scenario as a
single STA with the proportion of individuals effectively immunised as a result of direct administration
of OPV defined as a function of v, w and n, that will differ depending on whether we assume random
or fixed coverage. To do this, we introduce the concept of “effective vaccine coverage”, which is the
proportion of the population that is effectively immunised as a result of direct administration of OPV
after the n SIAs assuming no secondary spread of OPV from those SIAs. In other words, it is the
proportion of the population for whom at least one dose of OPV has taken after the n campaigns, when
we do not consider secondary spread of OPV between campaigns. Hereafter, we call the formulation of
the analytical model presented in the main text as the “sequential” version, and the new formulation
described below (in Section A.2.1) as the “simultaneous” version. We then show in Section A.2.2 that
the two formulations of the analytical model are equivalent in the sense that the proportion of the
population that has been infected with Sabin virus at the end of the n SIAs is the same.

A.2.1 Reformulation of the model by introducing the “effective vaccine coverage”

Given the number of SIAs n, the coverage of those SIAs v and the probability of vaccine take w,
the “effective vaccine coverage” for the random and fixed coverage hypotheses, denoted by e, and ey
respectively, can be written:

e = gw=1—(1-—ovw)" (3)
ey = grw=v(l—(1-w)") (4)

As previously, we denote by sg the proportion of children susceptible to poliovirus before the SIAs
commence. In this new formulation of the model, the proportion of children shedding vaccine virus
after all the n SIAs is

i=191+ P



where 71 is the proportion shedding as a result of direct administration of OPV during the n SIAs,
and ¢o is the proportion shedding as a result of secondary spread of OPV. Note that with this new
formulation, we have to compute i only once, whereas with the previous formulation, we computed i;
once for each SIA. Adapting the equations (1) and (2) for y{ and yg, we can obtain the expressions
for y1 and 92 as follows. In the case of random coverage,

y1 = sogrw = so(1 — (1 —vw)") ()
whereas in the case of fixed coverage,
Y1 = sogsw = sov(l — (1 —w)"). (6)

The proportion shedding as a result of secondary spread of OPV is in both cases written as a function
of 71 as
Y2 = (s0 — 1) [1 — exp(—Ros(y1 + 92))] - (7)

Finally, the proportion susceptible after n SIAs, s,, is given by:
Sp =50 — Y1 — Y2. (8)

This reformulation of the analytical model, although it may not seem natural, has several advan-
tages and allows us to better study the behaviour of the system. In particular, using this new version
of the model we can find an expression for the minimal STA vaccine coverage or the minimal number
of campaigns to have zero probability of a VDPV outbreak (Figure C and Section A.2.3).

A.2.2 The two formulations of the analytical model are equivalent

In this section, we show that the two formulations of the analytical model are equivalent for our
purposes for n = 2. Using the same reasoning, the equivalence can be generalised for any n € NT,

To prove that the two formulations (“sequential” and “simultaneous” versions) are equivalent, we
need to show that the proportion of individuals who have been infected with Sabin after the n SIAs
is the same with either version of the model. That is, using the notation introduced in Section A.1.2
and Section A.2.1, we want to see that the following equality is true:

n

D g =i

k=1

For n = 2, we thus need to show that i1 + i = 7, which is the same as:
Ui +us + i+ U5 =01+ 2. (9)

Note that the total proportion of individuals who have been infected with Sabin virus is the same
in the two versions, but this is not true for the subproportions of primary infected with OPV as a
result of direct administration of the vaccine (i.e. yi + y? # 1) or infected with OPV as a result of
secondary spread (i.e. ya + y35 # 72)-

Without loss of generality, we can assume that sg = 1. Using the definitions of y{ (j =1,2) and
71 in the corresponding formulations of the model, we have:

yi = ow (10)
yi = (1—ow—yy)ow (11)
no= 1—(1—ovw) (12)

Replacing y1, y3 and ¢ in (9) by their expressions ((10)—(12)), we need to show:

(1 —vw)ys + v5 = B (13)



Let’s prove (13). We have given the definitions of 1 and %? in (10) and (11) respectively. The
definitions of y5 and y3 are:

y2 = (1—y1)[l —exp (~Ros(yl +y5))}
l—vw)[l—exp( Ros( vw—}—yg )]

( (14)
( (15)
v = (I—yi—y—yi)[l—exp (- Ros( ui +43))] (16)
( (17)
( (18)

1 —ovw —ys —vw(l —vw — y2) )[1 = exp (—Ros(vw(l — vw — ys) + y%))]
= (1 —vw)(l —vw —y3)[1 —exp (~Ros(vw(l — vw — y3) + y3))]
Now, using (15) we obtain:
1 —vw —y3 = (1 — vw) exp (—Ros(vw + y3)) (19)
and we can replace (1 —vw — y3) in (18) by the expression in (19), thus giving:
y3 = (1 —vw)?exp (—Ros(vw + y3)) [1 — exp (—Ros(vw(l —vw — y3) +v3))]. (20)

Using the expressions for y4 and y3 in (15) and (20) respectively, we can do the following calculus:

(I—vw)ys +y3 = (1—vw)?[1 —exp(—Ros(ow +y3))] + (21)
+ (1 —vw)?exp (—Ros(vw + y3)) [1 — exp (—Ros(vw(1 —vw — y3) +45))|(22)
= (1 —ow)?[1 — exp (—Ros(vw + y3)) exp (—Ros(vw(l — vw — y3) + 45))|(23)
= (1 —U’LU)2[1 — exp (—Ros(vw—i-y% +ow(l — vw — y3) +y§))] (24)
= (1—ow)? [1 — exp (—ROS((l — (1 —ovw)?) + (1 —vw)ys +y3) )} (25)

Y1 Y2
As the equation
P = (1 —vw)?[1 —exp (—Ros((1 — (1 —vw)?) + 12))] (26)

defines 9, we have proven that (1 —vw)yd + 5 = .

A.2.3 The minimal v or n that bring the probability of VDPV outbreak to zero

Using the simultaneous version of the analytical model we can find expressions for the minimal
value of STA vaccine coverage or the minimal number of campaigns that bring the probability of VDPV
outbreak to zero.

The probability of VDPV outbreak is zero when

qg=1-— =0 <= s,=

Roy sy Roy

where s, is the proportion susceptible after the n SIAs. Using the expression for s, in the simultaneous
version of the model, we can write:

1
Rov’

=1- =0 <<= sp,=8—-U1—Y= 27
q Rovs. n=350—Y1—Y2 (27)
Using equation (27) and an approximation for y» we can find an explicit expression to have zero
probability of outbreak as a function 7 (i.e. as a function of the proportion of the population who
will receive OPV and for whom the vaccine will take after the n campaigns). Using this, we’ll be
able to determine the minimal vaccine coverage or the minimal number of SIAs required to bring the

probability of VDPV outbreak to zero, either for the random or fixed coverage.

We have seen in equation (7) that the proportion shedding as a result of secondary spread of OPV
satisfies the equation

%2 = (s0o — y1) [1 — exp(—Ros(y1 + 92))] -



A closed-form for g, can be obtained by approximating exp (—Rgs¥2) by its first order Taylor expansion

_ . (so—91)(1 — exp(—Rosy1))

~ - — 28
P2 1T (s0 — 41) Ros exp(—Rosy1) (28)
Replacing g2 in equation (27) by its approximation in (28), we obtain
— 1) (1 — —Rosy: 1

1 — (so — y1)Rosexp(—Rosy1)  Rov

and rearranging it, we can find the following expression for zero probability of outbreak as a function
of 11

¢q=0 <= f(n1)=(s0o—u1)exp(—Rosy1) [—(so — y1)RosRov + Ros + Rov] — 1 = 0. (30)

If we denote by ¢1* the value of y; such that f(y1) = 0, using the definition of ¢; through the
“effective vaccine coverage” in (5) and (6), we can find for a fixed number of campaigns n, the minimal
value of the vaccine coverage to have zero probability of VDPV outbreak for the random and fixed
coverage hypotheses, v, . and vf;m, respectively:

— _n* 1/n -

! -5 and vfm-n = g1 :
w so(1— (1 —w)n)

r
mwn "~

v (31)

Inversely, for a fixed value of vaccine coverage v, we can find the minimal number of campaigns to

have zero probability of VDPV outbreak for the random and fixed coverage hypotheses, n . ~and
!

Ny .ins TeSpectively:

In(1 — £°) In(1 — 2°)
L 50 f = vso .
Hmin {ln(l - vw)—‘ and i, { In(1 —w)

Using the expressions in (31), we can study how the minimum value of SIA vaccine coverage
required to have zero probability of VDPV outbreak decreases for an increasing number of SIAs:

1—(1—%/n

lim v"" = lim %0 =0
n—oo MM p oo w
- % - %
. . 5! n
lim ’Uf’n = lim = =,
n—oo ™" noco 30<1 — (1 — w)”) S0

It is interesting to note that in the case of random coverage, for an increasing number of campaigns,
the minimal SIA coverage to have zero probability of VDPV outbreak tends to 0. However, in the case
of fixed coverage, this value tends to y1*/sg, meaning that after a certain number of campaigns, further
increasing those will not reduce the value of vaccine coverage for which the probability of a VDPV
outbreak is zero, and therefore, for values of vaccine coverage between (0,41%/sg), the probability of
VDPYV outbreak will remain greater than zero, due to the presence of the persistently “missed” group.

Using the expressions in (30) and (31), we can easily explore how the minimum value of vaccine
coverage to have zero probability of VDPV outbreak changes for different values of the Sabin virus
reproduction number, Ryg, and the VDPV reproduction number, Ry (Figure D and Figure E).

A.3 Stochastic compartmental model

If a fixed proportion of individuals v,; is reached by routine immunisation at each scheduled
dose, and three doses of OPV are given, then assuming that only a fraction w of those doses will
“take”, the proportion c¢ of children who received the three doses and shed Sabin virus is given by
c = vw(l+ (1 —w)+ (1 —w)?). We model secondary spread of OPV through an SIR model with
demography where the proportion ¢ of children vaccinated and shedding the virus enter the model



as infected with Sabin poliovirus, and the other children enter the model as susceptible. A small
proportion of incident Sabin poliovirus infections are assumed to revert to VDPV, which may then
spread in the population. We assume that this proportion is fixed and independent of whether infection
was acquired directly through immunisation or through secondary spread of OPV.

The model is described by the following set of differential equations:

dx

il (1 —=c)u— Bszy — Pvav — px

dy

il (1= p)ep+ (1 = p)Bszy — vy — py
e _

g = Wz

dv

i pep + pBszy + Bvav —yv — pv

where z, y, z and v represent respectively, the proportion of individuals susceptible, infected with Sabin
virus, immune, or infected with a VDPV. The parameter u is the rate at which children enter and
leave the system, and thus 1/u is the average age of the population under consideration (set to 4
years). The mean duration of infectiousness was 1/y = 4 weeks [4], assumed to be the same for Sabin
virus and VDPVs. 8¢ and By determine the rate at which individuals infected with Sabin poliovirus
or VDPVs, respectively, infect susceptible individuals in the population. The reproduction number
of Sabin virus and VDPVs are given by Ros = fBs/(y + 1) and Roy = By /(v + p). Finally, p is the
probability that a Sabin infection reverts to a VDPV.

We denote by v, the proportion of children reached by each campaign. If we assume STA random
coverage (i.e the proportion vg;, of the population reached at each SIA consists of randomly chosen
individuals at each round), at each supplementary campaign a proportion (1 — p)vg;,w of susceptible
individuals becomes infected with Sabin virus, and a proportion pvg;,w becomes infected with a VDPV.
We further assume that STA are implemented 4 weeks apart.

Because VDPVs are rare, we assume that no VDPVs circulate at ¢ = 0, and we set the initial
conditions at the equilibrium of the nested model without VDPVs (i.e. v(0) =0 and p = 0):

(@(0.9(0).2(0) = (504 &) 5 - ) 5 - )

1 4c— 2 1
A=—— 1+ + —.
Ros \/ Ros R
We implemented a stochastic version of the model using the Gillespie’s 7-leap algorithm with a

time step of 0.1 week. Table A lists all the events describing the stochastic model for STA random
coverage.

where

To adapt the dynamic model to assume SIA fixed coverage (i.e. the SIAs repeatedly reach the same
fixed group of individuals of size vy, ), we need to split the population into two groups: a “vaccinated”
group that will represent a proportion vy, of the population, and a “missed” group that will be the
rest of the population, 1 — vg,. That is, for each variable x, y, v and z, we now have two versions:
xv, yv, vy and zy, for the individuals in the “vaccinated” group, and xps, yar, var and zpz, for the
individuals in the “missed” group. The dynamics of Sabin and VDPV transmission are the same. In
this case, at each supplementary campaign, a proportion (1 — p)w of susceptible individuals in the
“vaccinated” group becomes infected with Sabin virus, and a proportion pw of those becomes infected
with a VDPV. Note that we assume that routine immunisation coverage is independent of the SIA
coverage. A list with all the events in the STA fixed coverage model is provided in Table B.



B Supplementary data for risk factors for VDPV2 emergence and
spread in Nigeria (2004-2014)

Independent VDPV2 emergences. Data on the state, district and 6-month period where the
first case of poliomyelitis associated with each of the 29 independent VDPV2 emergences reported in
Nigeria during 2004—2014 are given in Table C.

Serotype-2 population immunity. We estimated serotype-2 vaccine-induced population immu-
nity by district and 6 months from vaccine efficacy [5] and coverage estimates based on AFP data for
children in Nigeria <36 months old reported during 2004-2014 using previously published methods
[6, 5] and a random-effects spatio-temporal model (see Section C for the details).

Routine immunisation coverage. Estimates of routine immunisation coverage were obtained us-
ing data from the 2003, 2008 and 2013 Demographic and Health Surveys (DHS) [7]. Because a large
number of OPV doses in Nigeria are given through supplementary campaigns, and DHS do not distin-
guish between routine and supplementary vaccinations, we used data for diphtheria-tetanus-pertussis
(DTP) vaccination instead of OPV, as the former is a better indicator of the children who attend
health services for routine immunisation. The “children DHS surveys” provide individual and spatial
data: for each child, the DTP doses received and the geographical coordinates (latitude and longitude)
of the sample point (cluster) with an error of less than 2km are reported. A child was assumed fully
vaccinated through routine immunisation if he/she had received the third dose of DTP (DTP3) by
the age of 12 months or later. Those children for whom the age was not reported were excluded. For
each cluster (i.e. sample point, which is likely to correspond to a village or a city), we calculated the
proportion of fully vaccinated children and then used a spatial Stochastic Partial Differential Equation
(SPDE) model [8] implemented with the R-INLA package [9, 10] to obtain predictions at unobserved
locations over Nigeria conditional on the observed data. We then used administrative boundary data
to extract mean summaries by district (see Section D for the details). We repeated the procedure for
the three surveys (2003, 2008 and 2013), thus giving 3 estimates per district, and finally used linear
interpolation to obtain estimates of routine immunisation coverage for every 6-month period.

Number of tOPV SIA campaigns in the past 6 months and time since the last tOPV SIA.
For each district and 6-month period, the number of SIA campaigns using tOPV in the preceding 6
months were extracted from the SIA calendar maintained by WHO (Figure H). The number of months
between the last SIA campaign using tOPV and the start of each 6-month period was also calculated.

Number of births. Estimates for the annual number of births per district were based on data
for 2010 from WorldPop [11] and data on administrative boundaries in Nigeria. WorldPop provides
estimates of live births per grid square in squares of approximately 100m side. Those estimates were
aggregated per district using the borders given by the shapefile (Figure I). For each district, the
estimate for 2010 was used over the entire period.

Population density. For each district, the population density was calculated using the data for
total population size and land size reported in the Census of 2006 [12] (Figure J). For each district,
the estimate for 2006 was used over the entire period.

Mean number of household members. FEstimates for the mean number of household members
in each district were obtained using data from the 2003, 2008 and 2013 DHS [7]. The “household
DHS surveys” provide data for the number of household members and the geographical coordinates
(latitude and longitude) of the sample point (cluster) with an error of less than 2km. We calculated the
mean number of members per household in a cluster and then proceeded as for routine immunisation
to get estimates per district per 6-month period. See Section D for the details.



C Spatio-temporal modelling of serotype-2 population immunity

C.1 Methods

We estimated serotype-2 population immunity for discrete 6-month periods for each district based
on the number of doses of OPV reported by non-polio AFP cases <36 months of age in that district
and the SIA calendar. We calculated estimates for each one year age group and took an average across
these age groups (since each age group is approximately equal in size).

In brief, individual serotype-2 immunity is obtained using the number of tOPV doses received
and a per-dose efficacy against serotype 2 poliomyelitis (previously estimated at 0.485 [5]), assuming
an all-or-nothing protective response to vaccination where the per-dose probability of inducing an
immune response is independent of the previous doses, proceeding as in previously published methods
[6, 5]. Because the reported number of doses does not specify the vaccine type, we derived the number
of tOPV doses that a non-polio AFP case had received by multiplying the number of reported doses
by the proportion of SIAs with tOPV that the child was exposed to based on the SIA calendar.

The reported doses do not distinguish between routine and supplementary doses either. We thus
used the estimates of routine immunisation coverage (obtained in Section D) to account for the doses
received through routine immunisation. For each non-polio AFP case, we generated 1000 possible
vaccination histories by defining a binary variable indicating whether the child was immunised through
routine services, drawn from a Bernoulli distribution with probability of success given by the routine
immunisation coverage in that district 6-month period. For each random draw, if a child was assumed
to participate in routine immunisation, three of the total number of doses reported (or the maximum
of doses reported, if <3 doses were reported) were assumed to be tOPV —corresponding to the routine
immunisation doses— and the remainder were assumed to be received through SIAs. We therefore
generated 1000 estimates of the probability of serotype-2 immunity per child, which were used to
obtain 1000 estimates of immunity for each district 6-month period by averaging across all children
and age group. We then used the median of those estimates in subsequent analyses.

We fitted a random-effects spatio-temporal model to the median estimates. This was important,
because the number of non-polio AFP cases by district 6-month period is relatively small, sometimes
zero, leading to districts 6-month period with no estimate or with estimates unusually low or high,
extremely affected by the presence of outliers.

Let p;j¢ be the median estimate of population immunity in a district ¢ (in a state j) at a 6-month
period ¢, and n;;; the number of non-polio AFP cases used to estimate p;j;. We defined the following
random-effects model for p;j;:

2
o
pijt ~ Normal (%‘t, )
Tijt
logit(mjt) =+ Yit + (Sjt

where « is the intercept and 7;; and dj; are two space-time interactions, at two different space levels,
the district, =, and the state, §. Having the state-level effect is important, because most of the SIA
are organised at the state level. The district level accounts for differences in vaccine coverage within
states. The interactions with time are necessary, because the number of tOPV SIA has highly changed
over the study period (see Figure H) and because changes in coverage are also likely to have occurred.
We assume that both interactions have a structured temporal effect and an unstructured spatial effect,
and we assume an autoregressive time structure of second order. That is, we assume a second-order
random walk across time for each area (district or state) independently of all other areas. The time
unit is 6 months.

Let T be the total number of time periods, I the total number of districts and J the total number
of states. The densities of the two random effects can be written as

T T
1
m(y|o3) o< exp (‘202 SN (i — 2y + %,t—2)2>
7 t=3

t i=1



and
T

J
1
W(d]a(%) o exp ~5,9 E E (056 — 20541 + 5.’t_2)2
8 =3 j=1

respectively [13]. Other models have been used in the literature to smooth crude estimates of popu-
lation immunity (e.g. [14]).

The model was fitted to the data using the Integrated Nested Laplace Approximation (INLA)
approach [9] implemented in the R-INLA package [10]. The INLA algorithm, proposed by Rue et al.
(2009), is a computationally efficient method for Bayesian inference with latent Gaussian models [9].
This approach provides accurate approximations of the posterior distributions in lower computational
time than Markov Chain Monte Carlo methods.

C.2 Results

The intercept, «, and the precision for the Gaussian observations and the two space-time interac-
tions (1/02, 1/02 and 1/0}) were estimated (Table D). The estimated serotype-2 population immunity
per district per 6-month period is illustrated in Figure G.

D Spatial modelling of DHS data through the SPDE approach

D.1 Methods
D.1.1 General overview

The goal was to obtain predictions of two variables (namely, DTP3 coverage and mean number
of household members) at unobserved locations conditionally on the observed data to produce a
continuous map of those variables in Nigeria. For this, we fitted a Bayesian hierarchical spatial model
to data provided by three Demographic and Health Surveys (DHS): 2003, 2008 and 2013 [7]. The
models were implemented through the Stochastic Partial Differential Equation (SPDE) approach and
we used Integrated Nested Laplace Approximation (INLA) for inference. The ultimate goal was to
use those maps to obtain an estimation of the two variables of interest per district, for the three years
of the surveys.

The SPDE approach [8] is useful to implement spatial models for point-reference data. The basic
idea of this approach is to represent a Gaussian field (GF') with continuous Matérn covariance function
as a discretely indexed Gaussian Markov random field (GMRF), and then do the computations using
the GMRF representation. The advantage of working with GMRFs is that, due to the Markovian
property (i.e. the full conditional distribution of the GF in one point depends only on the neighbours
of that point), they are defined by sparse precision matrices (i.e. the inverse matrix of the covariance
matrix), which makes numerical methods computationally more efficient.

The Matérn covariance X between two points with locations s; and s; € R? is defined as

2

iy = cov(a(s0),2(51)) = gy (el = sl Ko (el i = )
where || - || is the Euclidean distance in R?, o2 is the marginal variance, and K, denotes the modified
Bessel function of second kind and order v > 0. The parameter v is usually kept fixed and relates to
the smoothness of the underlying process and the scaling parameter x > 0 is related to the spatial
range of the covariance function (i.e. the distance at which the spatial correlation becomes almost
null). Based on this, the parameter range p has been empirically defined as p = v/8v/k, corresponding
to distances at which correlation is near 0.13, for all v > 1/2 [15].

In the SPDE approach, the GMRF that best represents a given GF with Matérn covariance is
constructed by using a certain SPDE that has such GF as a solution. The GMRF is formulated as a
finite weighted sum of simple basis functions and Gaussian-distributed weights. For a triangulation
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of the spatial domain and some chosen simple local basis functions (e.g. piecewise linear functions in
each triangle), the joint distribution of the weights is chosen so that the finite element representation
approximates the solutions to the SPDE. Lindgren et al. (2011) provided an explicit link between
the parameters of the GF (dense) covariance function and the Gaussian weights of the (sparse) pre-
cision matrix of the GMRF. The values in the interior of the triangles are then determined by linear
interpolation. We refer to Lindgren et al. (2011) for the details of the SPDE approach [8].

D.1.2 A hierarchical spatial model for DTP3 coverage

A Bayesian hierarchical spatial model for the outcome variable DTP3 coverage was implemented
through the SPDE approach with R-INLA [10] and fitted to three datasets provided by the 2003, 2008
and 2013 DHS [7].

We assume that the proportion of DTP3 coverage is binomially distributed:
y; ~ Binomial(n;, p;)

where y; is the observed value of DTP3 coverage at the DHS cluster ¢. This data model describes how
observations arise assuming a known latent field for the parameter p. We then model the probability
p as a logit-transformed Gaussian process using a stochastic model that only includes an intercept «,
and spatial structure (i.e. we do not include any covariates), resulting in the following latent Gaussian
model:

logit(pi) = o +

x ~ Normal(0, X)

where x is a mean-zero Gaussian field with Matérn spatial covariance, defining the spatially structured

random effect of the model. Finally, we used the default priors for the parameters implemented in
R-INLA [10].

D.1.3 A hierarchical spatial model for the mean number of household members

A Bayesian hierarchical spatial model for the outcome variable mean number of household members
was also implemented through the SPDE approach with R-INLA [10] and fitted to three datasets
provided by the 2003, 2008 and 2013 DHS [7].

Because the mean number of household members is always positive, we assumed that it followed
a Gamma distribution:

Yi ~ F(:Uia C¢)

and we used the parameterisation of the Gamma distribution used by INLA:

m(y) = F(iqb) (c;b)aﬁycd)l exp(—aﬁ%)

where c is a fixed scaling parameter and ¢ a precision parameter (or 1/¢ a dispersion parameter). We
model the mean p as a log-transformed Gaussian process using a stochastic model that, as previously,
only includes an intercept «, and spatial structure (i.e. we do not include any covariates), resulting
in the following latent Gaussian model:

log(pi) = a+z;

x ~ Normal(0, X)

where x is again a mean-zero Gaussian field with Matérn spatial covariance, defining the spatially
structured random effect of the model. Again, we used the default priors for the parameters imple-
mented in R-INLA [10].
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D.1.4 Validation and prediction

In order to validate the models, we used out-of-sample predictions with 10 different samples. Each
sample was constructed by randomly removing 5% of the observations from the dataset. We then
fitted the model with the remaining observations and used the removed observations for validation
purposes. For each model and each sample, we computed two predictive performance statistics: the
mean squared error (MSE) and the Pearson correlation coefficient.

Using the estimates of the model parameters, we estimated the continuous field for the mean and
the standard deviation of the variables of interest on a regular grid covering Nigeria.

Finally, the value of the variable of interest per district was taken as the mean of the values of the
variable on the points of the grid inside the polygon defining the boundaries of that district.

D.2 Results
D.2.1 Data, clusters and mesh

The observations used to fit the models are the values of the two variables (DTP3 coverage and
mean number of household members) observed in the clusters of the DHS. Figure K shows the location
of the clusters and the value of the two variables reported in each cluster. The number of observations
(i.e. clusters) significantly increased between the survey of 2003 and the survey of 2008 and remained
nearly the same between 2008 and 2013 (Table E). There was a similar increase in the number of
observations per cluster. For DTP3 coverage, the mean number of observations per cluster was 10.4
(interquartile range [IQR], 5.5-14.0) in 2003, 20.98 (IQR 13.00-28.00) in 2008, and 23.84 (IQR 15.00—
32.00) in 2013, whereas for the mean number of household members, the mean number of observations
per cluster was 19.96 (IQR 18.00-23.00) in 2003, 38.45 (IQR 37.00-41.00) in 2008 and 42.99 (IQR
42.00-45.00) in 2013.

We used the function implemented in R-INLA to construct the meshes to calculate the GMRF's in
the SPDE approach. By default, this function constructs a constrained refined Delaunay triangulation.

Because we used the location of the clusters as nodes of the mesh, the number of triangles of the mesh
also increased between 2003 and 2008, and remained similar between 2008 and 2013 (Table E).

D.2.2 Model parameter estimates

Results for the parameter estimates are shown in Table F for the models of DTP3 coverage and
Table G for the models of the mean number of household members.

For DTP3 coverage, the value of the intercept « increased over time, probably due to a general
increase in vaccine coverage. The spatial correlation range p, diminished between the model for 2003
(149 km, 95% credible interval [CI] 101-213) and the model for 2008 (83 km, 95% CI 71-97), and
remained very close for 2013 (84 km, 95% CI 72-97). This is probably related to the number of data
points, that increased between 2003 and 2008, and then remained nearly the same.

For the mean number of household members, the intercept « slightly diminished between 2003 and
2008 and then remained similar for 2013. This is probably due to a general decrease in the number
of household members. The spatial correlation range p decreased over time from 560 km (95% CI
289-1036) in 2003 to 241 km (95% CI 172-333) in 2013, but remained very high, suggesting that the
data has a large spatial correlation. The same parameter was much lower for the models of DTP3
coverage, possibly indicating more spatial variability for this latter variable.

D.2.3 Validation results
Despite their simplicity (the models relied only on an intercept and spatial structure; no covariates

were included), the six models showed a good predictive power, as indicated by relatively high values
of the Pearson correlation coefficient (mean values > 0.55) and low values for the Mean Squared
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Error, showing good agreement between the observed and predicted values based on the out-of-sample
predictions (Figure N). Moreover, the prediction performance seemed to improve over time, with both
statistics markedly improving when the models were fitted to the datasets of 2008 and 2013. This
improvement is probably due to the increasing number of observations points (i.e. clusters) in the
DHS (see Table E).

D.2.4 Predictions

The mean and standard deviation of the predicted spatial fields for DTP3 coverage and mean
number of household members are shown respectively in Figure O and Figure P. Finally, the estimated
mean value of the two variables per district are illustrated in Figure 4B of the main text and Figure Q
respectivley.
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E Supplementary Figures and Tables

Figure A: Illustration of the analytical model assumptions. This figure describes the transmission
of Sabin virus following the implementation of one SIA with OPV in a population that is partially
immune. The total population size is N = 40. (A) A proportion of the population sq is susceptible
(gray) at the time that the SIA commences, and thus a proportion 1 — sp is immune (blue). (B)
In this example, we assume that the SIA reaches a proportion v = 70% of the population. (C) We
assume that OPV does not replicate in immune individuals. However, susceptible individuals who
receive a dose of OPV will shed Sabin virus if the vaccine takes. We fix the probability of vaccine
take at w = 55%. We denote by yi the proportion of the population that sheds Sabin virus due to
direct administration of the vaccine (red). (D) Sabin-infected individuals may spread the virus to
their susceptible contacts. The reproduction number of Sabin virus is assumed to be small, Ryg < 1,
meaning that the proportion of individuals who will become infected due to secondary spread of OPV
will also be small. The proportion of the population that becomes infected with Sabin due to a contact
with a Sabin-infected individual (and not because of direct administration of OPV) is denoted by y3
(orange). (E) We assume that all Sabin infections have the same, very small probability of reverting
to a VDPV (green). All the individuals who have been infected by Sabin virus become immune, and
the proportion who remains susceptible after the SIA is updated by removing those who have been
infected. (F) The Sabin viruses that have reverted to VDPVs have a certain probability of spreading
in the population that will depend on the proportion of individuals susceptible after the campaigns
(in this example, s1) and the transmission number of the VDPVs, Rgy > 1.

Susceptible Immune Sabin-infected as a result Sabin-infected as a result Infected with a VDPV J) OPV dose
of direct OPV of a contact with a
administration Sabin-infected individual
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Figure B: Sensitivity analysis of the probability of a VDPV outbreak to the parameter o (analytical
model). The probability of a VDPV outbreak depends on the probability of Sabin reversion (p) and
the population size (N), via ¢ = pN, implying that for any pair of values (p,N) that have the same
product, the behaviour of the system is the same. In the main text, we have explored the probability
of a VDPYV outbreak for ¢ = 5. Here we show how the probability of a VDPV outbreak changes for
smaller (0 = 1) and larger (o = 50) values of 0. Probability of a VDPV outbreak for o = 1, assuming
random (A) and fixed (B) coverage, and for o = 50, also assuming random (C) and fixed (D) coverage.
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Figure C: Illustration of results that can be obtained with the “simultaneous” version of the analytical
model. In Section A.2.3 we show how we can find an expression for the minimal value of STA vaccine
coverage or the minimum number of SIAs for which the probability of VDPV outbreak is zero (blue
arrow).
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Figure D: Sensitivity analysis of the critical value of SIA vaccine coverage for sg = 1. Minimum value
of SIA vaccine coverage to have zero probability of a VDPV outbreak for different values of the Sabin
virus reproduction number, Rys (z-axis), and different values of the VDPV reproduction number,
Ry (y-axis), under the hypotheses of random (left) and fixed (right) coverage and for 2, 3 and 4
rounds of STA (from top to bottom), in a population completely susceptible (i.e. so = 1). White areas
indicate that the probability of a VDPV outbreak cannot be zero even when 100% of the population
is vaccinated in each SIA.
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Figure E: Sensitivity analysis of the critical value of SIA vaccine coverage for sp = 0.6. Minimum
value of SIA vaccine coverage to have zero probability of a VDPV outbreak for different values of
the Sabin virus reproduction number, Rys (z-axis), and different values of the VDPV reproduction
number, Roy (y-axis), under the hypotheses of random (left) and fixed (right) coverage and for 2, 3
and 4 rounds of SIA (from top to bottom), in a population where 60% of the children are susceptible
to poliovirus (i.e. sp = 0.6).
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Figure F: Sensitivity analysis of the probability of a VDPV outbreak to the population size (N) for
the stochastic transmission model. The probability of a VDPV outbreak is defined as the probability
of >200 VDPV2 incident infections in the 6 months following OPV2 withdrawal. We show this
probability for increasing population size: (A) 10000, (B) 100000, and (C) 1000000, while keeping
the product of the probability of Sabin reversion (p) and the population size (N) constant.
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Figure G: Serotype-2 population immunity estimates per district and 6-month period. The publication
of this map does not imply the expression of any opinion whatsoever on the part of WHO concerning
the legal status of any territory, city or area or of its authorities, or concerning the delimitation of its
frontiers or boundaries.
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Figure H: Number of tOPV SIAs during each 6-month period. The publication of this map does not
imply the expression of any opinion whatsoever on the part of WHO concerning the legal status of any
territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries.
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Figure I: Annual number of births per district (logl0 scale) based on data for 2010 from WorldPop [11]
and data on administrative boundaries in Nigeria. The publication of this map does not imply the
expression of any opinion whatsoever on the part of WHO concerning the legal status of any territory,
city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries.
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Figure J: Population density per district (logl0 scale) using data for total population size and land
size reported in the Census of 2006 [12]. The publication of this map does not imply the expression of
any opinion whatsoever on the part of WHO concerning the legal status of any territory, city or area
or of its authorities, or concerning the delimitation of its frontiers or boundaries.
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Figure K: Observed data in the DHS clusters (points) for the 2003, 2008 and 2013 DHS. (A) DTP3
coverage and (B) mean number of household members. The publication of this map does not imply the
expression of any opinion whatsoever on the part of WHO concerning the legal status of any territory,
city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries.
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Figure L: Meshes used to obtain the GMRFs in the SPDE approach for the 2003, 2008 and 2013
DHS data for DTP3 coverage. Boundary of Nigeria (orange line), location of the clusters (red points),
envelope containing all the clusters used to construct the mesh (blue line), and triangulation of the
domain (black).
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Figure M: Meshes used to obtain the GMRFs in the SPDE approach for the 2003, 2008 and 2013 DHS
data for the mean number of household members. Boundary of Nigeria (orange line), location of the
clusters (red points), envelope containing all the clusters used to construct the mesh (blue line), and

triangulation of the domain (black).
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Figure N: Predictive performance of the spatial models for DHS data. Predictive performance statistics
for the three models for DTP3 coverage (A, B), and for the three models for the mean number of
household members (C, D). Boxplots of the Pearson correlation coefficient and Mean Squared Error
were obtained using out-of-sample predictions with 10 random samples.
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Figure O: Predicted DTP3 coverage. Maps of the predicted posterior mean (left) and standard de-
viation (right) of DTP3 coverage in Nigeria. Black crosses (+) represent the localisation of the DHS
clusters (i.e. locations with observed data).
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Figure P: Predicted number of household members. Maps of the predicted posterior mean (left) and
standard deviation (right) of the mean number of household members in Nigeria. Black crosses (+)

represent the localisation of the DHS clusters (i.e. locations with observed data).
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Figure Q: Predicted mean number of household members by district. The publication of this map
does not imply the expression of any opinion whatsoever on the part of WHO concerning the legal
status of any territory, city or area or of its authorities, or concerning the delimitation of its frontiers
or boundaries.
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Table A: Description of the dynamic transmission model for the SIA random coverage hypothesis.
List of events and their transitions. The variables are as follows: x is the proportion of susceptible, y
is the proportion infected with Sabin virus, v is the proportion infected with a VDPV, and z is the
proportion immune. The force of infection at time ¢ for Sabin virus is given by Ag(t) = Bsy(t), and

the force of infection for VDPVs is Ay (t) = By o(t).

Event Transition Rate
Births - entering the system
Non-immunised through RI r—r+1 (I1—c)pu
Immunised through RI without reversion to VDPV y — y+1 (1—p)cp
Immunised through RI with reversion to VDPV v—=ov+1 pclL
Transmission of infections
Transmission of Sabin without reversion to VDPV  y —y+1 (1 —p)Asx
x—x—1 (1 —p)Asx
Transmission of Sabin with reversion to VDPV v—=v+1 PAST
x—xz—1 PAST
Transmission of VDPV v—=v+1 AV
r—z—1 AVT
Clearance of infections
Clearance of Sabin infections y—y—1 Yy
z—= 241 Yy
Clearance of VDPV infections v—=v—1 v
z—z+1 YU
Leaving the system (at the age of 5)
r—x—1 U
y—y—1 1y
v—v—1 7,
z—z—1 wz

STA

y = y+ (1 — plusiqwz
V= U+ PUgiqWT
T — T — VgiqWX
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Table B: Description of the dynamic transmission model for the STA fixed coverage hypothesis. List of
events and their transitions. In this case, the population is structured into two groups, the “vaccinated”
group (made up by all the individuals who receive OPV through SIAs), and the “missed” group. The
variables are as follows: xy (xps) is the proportion of susceptible in the vaccinated (missed) group,
yy (yar) is the proportion infected with Sabin virus in the vaccinated (missed) group, vy (vas) is the
proportion infected with a VDPV in the vaccinated (missed) group, and zy (zps) is the proportion
immune in the vaccinated (missed) group. The force of infection at time ¢ for Sabin virus is given by
As(t) = Bs(yv(t) + yar(t)), and the force of infection for VDPVs is Ay (t) = By (vv (t) + var(t)).

Event Transition

Rate

Births - entering the system
Non-immunised through RI ry > oy +1
Ty — oy + 1
Immunised through RI without reversion to VDPV yy — yy + 1
ym — ym +1
Immunised through RI with reversion to VDPV vy — vy + 1
vy — oy +1

Transmission of infections

Transmission of Sabin without reversion to VDPV  yy — yy + 1 (1= p)Aszy
Ty > xy — 1 (1 — p)Asxv
ym — ym + 1 (1= p)Aszum
Ty — xyp — 1 (1 —p)Asxpr

Transmission of Sabin with reversion to VDPV vy = vy + 1 PASTY
oy — axy — 1 pPASTY
oy — vy + 1 PAST N
Ty — xp — 1 PAST pf

Transmission of VDPV vy = vy + 1 ATy
Ty —xy — 1 )\vxv
vy — oy + 1 AVIM
Ty — oy — 1 )\vl'M

Clearance of infections

Clearance of Sabin infections yvy —yy — 1 Yy
2y — 2y +1 YYv
ym — ym — 1 YYm
v — zm + 1 YYm

Clearance of VDPYV infections vy — vy — 1 Yoy
zv = zy + 1 Yoy
vy — vy — 1 YUM
2 — 2y + 1 YU

Leaving the system (at the age of 5)
ry > xy — 1 [Tave
yv = yy —1 Hyv
vy — oy — 1 poy
2y > zy — 1 U2y
Ty — oy — 1 T T
ym — ym — 1 HYM
vy — oy — 1 Y,
2 — 2y — 1 %374

SIA
yv = yv + (1 = pJwzy
VY —> Vy + pWIT Ny
Ty — Ty — WLy
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Table C: Independent VDPV2 emergences in Nigeria (2004-2014). State, district and 6-month period
where the first case of poliomyelitis associated with each of the 29 independent VDPV2 emergences
were reported in Nigeria during 2004-2014. The last column indicates whether the isolate of the corre-

sponding VDPV?2 emergence established a circulating lineage (i.e. resulted in >1 case of poliomyelitis).

State District 6-month period Circulating lineage
BAUCHI ITAS/GADAU Apr 2005 — Sept 2005 Yes
LAGOS MUSHIN Apr 2005 — Sept 2005 No
SOKOTO ILLELA Apr 2005 — Sept 2005 No
KADUNA SABON GARI Oct 2005 — Mar 2006 No
KEBBI KOKO/BESSE Oct 2005 — Mar 2006 No
JIGAWA KIYAWA Apr 2006 — Sept 2006 Yes
BORNO KONDUGA Apr 2006 — Sept 2006 No
BORNO MAIDUGURI Apr 2006 — Sept 2006 No
JIGAWA YANKWASHI Apr 2006 — Sept 2006 No
BORNO MAIDUGURI Apr 2006 — Sept 2006 Yes
JIGAWA GARKI Apr 2006 — Sept 2006 Yes
BAUCHI ZAKI Oct 2006 — Mar 2007 No
SOKOTO GADA Oct 2006 — Mar 2007 Yes
NIGER WUSHISHI Apr 2007 — Sept 2007 No
ANAMBRA IDEMILI SOUTH Oct 2007 — Mar 2008 No
BAUCHI DARAZO Apr 2008 — Sept 2008 No
SOKOTO BODINGA Apr 2008 — Sept 2008 No
KEBBI SURU Oct 2008 — Mar 2009 Yes
KATSINA DAURA Oct 2008 — Mar 2009 No
BORNO DAMBOA Apr 2009 — Sept 2009 Yes
KADUNA ZARIA Apr 2009 — Sept 2009 No
KEBBI ALEIRO Oct 2010 — Mar 2011 No
NIGER BIDA Oct 2011 — Mar 2012 No
EDO OVIA SOUTH-WEST Apr 2012 — Sept 2012 No
KEBBI KOKO/BESSE Oct 2012 — Mar 2013 No
GOMBE DUKKU Apr 2013 — Sept 2013 No
CROSS RIVER CALABAR SOUTH Oct 2013 — Mar 2014 No
FCT, ABUJA BWARI Apr 2014 — Sept 2014 No
KANO KURA Apr 2014 — Sept 2014 No
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Table D: Parameter estimates (mean and 95% credible interval) for the spatio-temporal random-effects
model of serotype-2 population immunity.

Parameters

Mean (95% credible interval )

Intercept, «

Precision for the Gaussian observations, 1/0?
Precision for the district-temporal interaction, 1/ O',%
Precision for the state-temporal interaction, 1/ ag

0.298 (0.159 — 0.436)
37.683 (37.673 — 37.701)
110.005 (109.974 — 113.258)
35.498 (35.483 — 35.524)

Table E: Number of DHS clusters. Number of clusters (observations) for the three DHS datasets
(2003, 2008, 2013), and number of triangles in the mesh used for SPDE to predict the DTP3 coverage
(left) and the mean number of household members (right).

DTP3 coverage

2003 2008 2013

No. clusters
No. triangles (mesh)

357 886 889
755 1327 1374

House members

2003 2008 2013

No. clusters
No. triangles (mesh)

360 886 889
755 1327 1374

Table F: Parameter estimates for the models of DTP3 coverage. Posterior estimates (mean and 95%
credible interval) of model parameters for the three spatial models for DTP3 coverage (2003, 2008,

2013).

Parameters

2003

2008

2013

Intercept, «
Nominal variance, o
Nominal range, p (km)

-1.935 (-2.641 — -1.300)
2.840 (1.897 — 4.140)
149 (101 — 213)

“1.886 (-2.319 — -1.469)
3.987 (3.285 — 4.821)
83 (71 - 97)

~1.256 (-1.735 — -0.792)

4.762 (3.902 — 5.775)
84 (72 - 97)

Table G: Parameter estimates for the models of the number of household members. Posterior estimates
(mean and 95% credible interval) of model parameters for the three spatial models for the mean number
of household members (2003, 2008, 2013).

Parameters

2003

2008

2013

Precision of Gamma, ¢
Intercept, «

Nominal variance, o
Nominal range (km), p

30.749 (26.083 — 35.860)
1.625 (1.406 — 1.843)
0.021 (0.009 — 0.045)

560 (289 — 1036)

32.103 (28.641 — 35.784)
1.572 (1.453 — 1.689)
0.021 (0.012 - 0.035)

361 (223 - 530)

38.838 (34.457 — 43.673)
1.580 (1.482 — 1.679)
0.032 (0.021 — 0.047)

241 (172 - 333)
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